Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
preprints.org; 2020.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202008.0220.v1

ABSTRACT

The Public Health Alliance for Genomic Epidemiology (PHA4GE) (https://pha4ge.org) is a global coalition that is actively working to establish consensus standards, document and share best practices, improve the availability of critical bioinformatic tools and resources, and advocate for greater openness, interoperability, accessibility and reproducibility in public health microbial bioinformatics. In the face of the current pandemic, PHA4GE has identified a clear and present need for a fit-for-purpose, open source SARS-CoV-2 contextual data standard. As such, we have developed an extension to the INSDC pathogen package, providing a SARS-CoV-2 contextual data specification based on harmonisable, publicly available, community standards. The specification is implementable via a collection template, as well as an array of protocols and tools to support the harmonisation and submission of sequence data and contextual information to public repositories. Well-structured, rich contextual data adds value, promotes reuse, and enables aggregation and integration of disparate data sets. Adoption of the proposed standard and practices will better enable interoperability between datasets and systems, improve the consistency and utility of generated data, and ultimately facilitate novel insights and discoveries in SARS-CoV-2 and COVID-19.


Subject(s)
COVID-19 , Fractures, Open
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.11.037382

ABSTRACT

SARS-CoV-2 emerged in December 2019 in Wuhan, China and has since infected over 1.5 million people, of which over 107,000 have died. As SARS-CoV-2 spreads across the planet, speculations remain about the range of human cells that can be infected by SARS-CoV-2. In this study, we report the isolation of SARS-CoV-2 from two COVID-19 patients in Toronto, Canada. We determined the genomic sequences of the two isolates and identified single nucleotide changes in representative populations of our virus stocks. More importantly, we tested a wide range of human immune cells for productive infection with SARS-CoV-2. Here we confirm that human primary peripheral blood mononuclear cells (PBMCs) are not permissive to SARS-CoV-2. As SARS-CoV-2 continues to spread globally, it is essential to monitor small nucleotide polymorphisms in the virus and to continue to isolate circulating viruses to determine cell susceptibility and pathogenicity using in vitro and in vivo infection models.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL